
Chapter 7 & 8

Computability 
and complexity theoryand complexity theory



Computability Theory

Computability theory answers: 
What problems can computers solve?

 Why we want to know if a problem is unsolvable?
 to realize that the problem must be simplified or altered  to realize that the problem must be simplified or altered 
before you can find an algorithmic solution.



Complexity theory

Measuring Complexity
Suppose that we have a decider D for some 
language L. 

How might we measure the complexity of D?How might we measure the complexity of D?
Number of states. 
Size of tape alphabet. 
Size of input alphabet. 
Amount of tape required. 
Number of steps required. Or ?



Time complexity

 A step of a Turing machine is one event where the 
TM takes a transition. 
 Running a TM on different inputs might take a 
different number of steps.
 The number of steps a TM takes on some  The number of steps a TM takes on some 
input is sensitive to

The structure of that input. T
he length of the input. 

How can we come up with a consistent 
measure of a machine's runtime?



Time Complexity 
The time complexity of a TM M is a function (typically 
denoted f(n)) that measures the worst-case number of 
steps M takes on any input of length n. 

By convention, n denotes the length of the input. 

Example:  L = { w Σ* | w has the same number of 0s and 1s }
Solution: M = “On input w: –

Scan across the tape until a 0 or 1 is found. 
If none are found, accept.
If one is found, continue scanning until a matching 1 or 0 is found. 
If none is found, reject. 
Otherwise, cross off that symbol and repeat.”

What is the time complexity of M?



Example

Scan across the tape until a 0 or 1 is found. At most n steps
If none are found, accept. At most 1 step
If one is found, continue scanning until ….. At most  n step
a matching 1 or 0 is found. 
If none is found, reject. …………………            At most 1 step
Otherwise, cross off that symbol and Otherwise, cross off that symbol and 
go back to start of tape………………………………….. At most  n step
repeat.”    …………………………………………………….n/2
Accept………………………..atmost 1 step

Hence f(n) = n/2(n+n) + 1 = n2 + 1



An Easier Approach 

In complexity theory, we rarely need an exact value 
for a TM's time complexity. 
Usually, we are curious with the long-term growth 
rate of the time complexity. 

For example, 
if the time complexity is 3n + 5, then doubling the length of the string roughly 
doubles the worst-case runtime. 
If the time complexity is 2n – n2 , since 2n grows much more quickly than n2 , for 
large values of n, increasing the size of the input by 1 doubles the worst-case 
running time



Big-O Notation 

Ignore everything except the dominant growth 
term, including constant factors.  

Examples: 
4n + 4 = O(n)4n + 4 = O(n)
137n + 271 = O(n)
n 2 + 3n + 4 = O(n2)
2 n + n 3 = O(2n)
137 = O(1) 
n 2 log n + log5 n = O(n2 log n)



Big-O Notation, Formally 

Let f : ℕ → ℕ and g : ℕ → ℕ. 
Then f(n) = O(g(n)) iff there exist constants c ℝ
and n0 ℕ such that 

For any n ≥ n0 , f(n) ≤ cg(n)0

Intuitively, as n gets “large” (greater than n0 ), f(n) 
is bounded from above by some multiple 
(determined by c) of g(n)



Properties of Big-O Notation

Theorem: If f 1 (n) = O(g1 (n)) and f 2 (n) = O(g2 (n)), then f

1 (n) + f 2 (n) = O(g1 (n) + g2 (n)). 
Intuitively: If you run two programs one after another, the big-O of the result is 
the big-O of the sum of the two runtimes.

Theorem: If f 1 (n) = O(g1 (n)) and f 2 (n) = O(g2 (n)), then f 

1 (n)f 2 (n) = O(g1 (n)g2 (n)). 1 (n)f 2 (n) = O(g1 (n)g2 (n)). 
Intuitively: If you run one program some number of times, the big-O of the 
result is the big-O of the program times the big-O of the number of iterations.

This makes it substantially easier to analyze time 
complexity, though we do lose some precision.



Classes of problemsClasses of problems
P Vs. NP



Efficiency

 What does it mean for an algorithm/ TM to be efficient?

 We define running time as the  function of input length n

 When an algorithm has a running time O(n2) it means that 

for a long enough inputs the algorithm takes no more than for a long enough inputs the algorithm takes no more than 

quadratic time.

 An algorithm is efficient if its running time is polynomial. 

More precisely a running time is polynomial if it is O(nc)

for some constant c.
 Polynomial: n2, n100,nlogn

 Non polynomial: 2n,n!,2logn



NP-Hard and NP-Complete problems

• P = the set of problems that are solvable in polynomial 

time. 

• If the problem  has size n, the problem should be solved in 

nO(1).

• NP = the set of decision problems solvable in

nondeterministic polynomial time.



Decision Problems

• The output of these problems is a YES or NO answer.

• Example: is N prime? Do sequences x and y have common subsequences of length>k?

• For many problems there is an associated decision problem.

• Nondeterministic refers to the fact that a solution can be
guessed out of polynomially many options in O(1) time.

• If any guess is a YES instance, then the nondeterministic
algorithm will make that guess.

• In this model of nondeterminism, we can assume that all
guessing is done first.

• This is equivalent to finding a polynomial-time verifier of
polynomial-size certificates for YES answers.



NP

Given a solution to an instance of a decision problem, we 
want  to verify if it actually is a solution (is this sequence 

actually a  subsequence of x and y?)
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NP

Given a solution to an instance of a decision problem, we want  to 
verify if it actually is a solution (is this sequence actually a  

subsequence of x and y?)

There are many decision problems where we can efficiently
verify solutions, but can’t efficiently find them.
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Example: Hamiltonian Cycle: In the graph G is there a simple  cycle that
goes through every vertex?



NP

Given a solution to an instance of a decision problem, we 
want  to verify if it actually is a solution (is this sequence 

actually a  subsequence of x andy?)

There are many decision problems where we can efficiently
verify solutions, but can’t efficiently find them.

Example: Hamiltonian Cycle: In the graph G is there a simple  
cycle that goes through every vertex?
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cycle that goes through every vertex?

There is no known poly-time algorithm for this but it is easy  
to verify if a given cycle is a Hamiltonian cycle.



NP

Given a solution to an instance of a decision problem, we 
want  to verify if it actually is a solution (is this sequence 

actually a  subsequence of x andy?)

There are many decision problems where we can efficiently
verify solutions, but can’t efficiently find them.

Example: Hamiltonian Cycle: In the graph G is there a simple  
cycle that goes through every vertex?
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cycle that goes through every vertex?

There is no known poly-time algorithm for this but it is easy  
to verify if a given cycle is a Hamiltonian cycle.

NP is the class of decision problems where if the answer is
YES then there is a short “solution” which can be easily

verified.



Maximum Clique
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Given a graph G and a number K, are there K vertices in G
that are  all pairwise adjacent (this is called a clique)?



Maximum Clique

7
17 8

116 9
6 2

15 10
5 3

4
14 11

20

14 11

13 12

Given a graph G and a number K, are there K vertices in G
that are  all pairwise(very 2 of w/c are adjacent) adjacent

(this is called a clique)?

Easy to verify since given the vertices we only need check that  
they are all adjacent.

Useful for finding groups of mutual friends in social networks.



3-Coloring
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Given a graph G, can we assign 3 colors to its vertices so that
any  pair of adjacent vertices have different colors?



3-Coloring

6

1
10 7

5 2

4 3
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9 8

Given a graph G, can we assign 3 colors to its vertices so that
any  pair of adjacent vertices have different colors?

Easy to verify a coloring by examining all edges so it is in NP.

Useful for allocating transmission frequencies to radio stations  
to avoid interference.



Partition Problem

?1 5 2 4 3 7

1 5 9 4 3 8 10 2 61 5 2 4 3 7
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Given n numbers,  can  they be partitioned into 2 sets such
that the sums of the numbers in the sets are equal



Partition Problem

?1 5 2 4 3 7

1 5 9 4 3 8 10 2 61 5 2 4 3 7
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Given n numbers,  can  they be partitioned into 2 sets such
that the sums of the numbers in the sets are equal

Easy to verify given the two sets, so it is in NP.



P v NP

Recall that for a decision problem in NP, if the answer is yes  
for a given input then the “solution” can be verified efficiently
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P v NP

Recall that for a decision problem in NP, if the answer is yes  for 
a given input then the “solution” can be verified efficiently

But can we compute the solution efficiently?
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But can we compute the solution efficiently?



P v NP

Recall that for a decision problem in NP, if the answer is yes  for 
a given input then the “solution” can be verified efficiently

But can we compute the solution efficiently?
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But can we compute the solution efficiently?

We don’t know! This isthe P =? NP question.



Hard Problems

?
One approach to settling P = NP: Identify the “hardest”
problems in NP and focus on solving them in poly-time
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Hard Problems

?
One approach to settling P = NP: Identify the “hardest”

problems in NP and focus on solving them in poly-time

But how do we know which problems are hard?
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But how do we know which problems are hard?



Hard Problems

?
One approach to settling P = NP: Identify the “hardest”
problems in NP and focus on solving them in poly-time

But how do we know which problems are hard?
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But how do we know which problems are hard?

Idea: Reductions



Reductions

Input x to A

We can reduce problem A to problem B if we  
can use a solution to B to solveA.

reduction f

f(x)

Output for A

Algorithm for B

f(x)
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Reductions

Input x to A

We can reduce problem A to problem B if we  
can use a solution to B to solveA.

Example: Problem A is finding the median of n
elements and Problem B is sorting n elements.

reduction f

f(x) elements and Problem B is sorting n elements.

Output for A

Algorithm for B

f(x)
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Reductions

Input x to A

We can reduce problem A to problem B if we  
can use a solution to B to solveA.

Example: Problem A is finding the median of n
elements and Problem B is sorting n elements.

reduction f

f(x) elements and Problem B is sorting n elements.
A reduces to B since we can take the input
to A, sort it using the solution to B, and
then recover the solution to A by looking at
the middle element in sorted order.

Output for A

Algorithm for B

f(x)
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Reductionscont.

The median and sorting example illustrates reductions, but it  
is a bad example since medians can be computed directly

faster than sorting.
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Reductionscont.

The median and sorting example illustrates reductions, but it  
is a bad example since medians can be computed directly

faster than sorting.

However if we go the other way we can use the median finding  
algorithm to make an efficient sorting algorithm.
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algorithm to make an efficient sorting algorithm.



Reductionscont.

The median and sorting example illustrates reductions, but it  
is a bad example since medians can be computed directly

faster than sorting.

However if we go the other way we can use the median finding  
algorithm to make an efficient sorting algorithm.
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algorithm to make an efficient sorting algorithm.
Sort n elements, compute the median using the black box for A  

Use the median as a pivot like in quicksort and recurse.
We will always have a perfect partition so the algorithm will be  

efficient.



Reduction Definition

Input to A
We need a more rigorous definition of a  

reduction to identify the hardest problems in NP.

f (x)
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Output for A

Algorithm for B



Reduction Definition

Input to A
We need a more rigorous definition of a  reduction 

to identify the hardest problems in NP.

We say Decision Problem A reduces to Decision  
problem B if there  is a function f mapping  

inputs of A to inputs of B such that:

f (x)
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If x is a YES input for A, then f (x) is a YES  
input for B

IF x is a NO input for A, then f (x) is a NO  
input for B

Output for A

Algorithm for B



Reduction Definition

Input to A
We need a more rigorous definition of a  reduction 

to identify the hardest problems in NP.

We say Decision Problem A reduces to Decision  
problem B if there  is a function f mapping  

inputs of A to inputs of B such that:

f (x)
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If x is a YES input for A, then f (x) is a YES  
input for B

IF x is a NO input for A, then f (x) is a NO  
input for B

Output for A The reduction is f itself.

Algorithm for B



Poly-Time Reductions

If f (x ) can be computed in polynomial time, we say it is a  
polynomial-time reduction.

Note: If f is a polynomial-time reduction, then |f (x )| is
polynomial in the length ofx.
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Poly-Time Reductions

If f (x ) can be computed in polynomial time, we say it is a
polynomial-time reduction.

Note: If f is a polynomial-time reduction, then |f (x )| is
polynomial in the length ofx.

Median finding and sorting are not decision problems, but
otherwise the median finding to sorting reduction fits this
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otherwise the median finding to sorting reduction fits this
definition.

What  is f (x)? Is it in computable poly-time?

However, the other direction does not fit since we repeatedly
use the median finding algorithm



Poly-Time ReductionImplications

What does it mean if there is a poly-time reduction from A to  
B?
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Poly-Time ReductionImplications

What does it mean if there is a poly-time reduction from A to  
B?

If B is solvable in poly time,  then  so is A. Just map the input
to A to an input to B, and use the method for solving B

(recall that if f (x ) and g (x ) are polynomials then f (g (x )) is  

43

(recall that if f (x ) and g (x ) are polynomials then f (g (x )) is  
also a polynomial).



Poly-Time ReductionImplications

What does it mean if there is a poly-time reduction from A to  
B?

If B is solvable in poly time,  then  so is A. Just map the input
to A to an input to B, and use the method for solving B

(recall that if f (x ) and g (x ) are polynomials then f (g (x )) is  
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(recall that if f (x ) and g (x ) are polynomials then f (g (x )) is  
also a polynomial).

If  A is not solvable in polynomial time, then neither is B.
This statement is  actually equivalent to the original one.



Example

Suppose we know that if one could travel faster than the
speed of light, then one could travel back in time.
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Example

Suppose we know that if one could travel faster than the
speed of light, then one could travel back in time.

Using our language, the problem of traveling back to the past  
reduces to the problem of traveling faster than the speed of  

light
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Example

Suppose we know that if one could travel faster than the
speed of light, then one could travel back in time.

Using our language, the problem of traveling back to the past  
reduces to the problem of traveling faster than the speed of  

light

If we manage  to  build a faster-than-light vehicle, then we can  
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If we manage  to  build a faster-than-light vehicle, then we can  
go back  to  the past

But  if we prove that is impossible to travel back in time, then
we immediately know it is impossible to build a

faster-than-light vehicle.



NP−Completeness Definition

Suppose we have a  decision problem A in NP such that for  
every problem in NP there is a polynomial time reduction to  

A.

48



NP−Completeness Definition

Suppose we have a  decision problem A in NP such that for  
every problem in NP there is a polynomial time reduction to  

A.

If we knew A is solvable in polynomial time, then every
problem in NP can be solved in polynomial time.

Equivalently, A P = P =NP.
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Equivalently, A P = P =NP.



NP−Completeness Definition

Suppose we have a  decision problem A in NP such that for  
every problem in NP there is a polynomial time reduction to  

A.

If we knew A is solvable in polynomial time, then every

problem in NP can be solved in polynomial time.
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Equivalently, A P = P  =NP.

In a  sense, A is a “hardest” problem in NP.

We say a problem A is NP-complete if
A NP

Every problem in NP reduces to A



Satisfiability

How could we ever show that every problem in NP reduces  
to a problem A?
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Satisfiability

How could we every show that every problem in NP reduces  
to a problem A?

Cook and Levin did exactly this for the Satisfiability problem.

Satisfiability: Given a boolean formula, is there a way to set  
the  variables such that the formula evaluates to true?
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Satisfiability
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Satisfiability

How could we every show that every problem in NP reduces  
to  a problem A?

Cook and Levin did exactly this for the Satisfiability problem.

Satisfiability: Given a boolean formula, is there a way to set  
the  variables such that the formula evaluates to true?

¬ ¬ ¬ ¬

54

For example, ((¬a v¬b v c ) x (a v c) x(¬c v b)) v (¬a x b x
c)

is satisfied by a 1, b 0, c 0.

Cook-Levin  uses the fact that every problem in NP has a  
poly-time verifier to construct a formula that is satisfiable if  
and  only if there  is a “solution” that the verifier will accept.



Propertiesof Reductions

Input to A Output for A

Input to B Output for B

Input to A Output for AAlgorithm for Cg(x)f (x)

Algorithm for Cg(x)

Algorithm for Bf (x)
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Input to A Output for A

Polynomial-time reductions are transitive: If A reduces to B
and B reduces to C, then A reduces to C

Algorithm for Cg(x)f (x)



Propertiesof Reductions

Input to A Output for A

Input to B Output for B

Input to A Output for AAlgorithm for Cg(x)f (x)

Algorithm for Cg(x)

Algorithm for Bf (x)
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Input to A Output for A

Polynomial-time reductions are transitive: If A reduces to B
and B reduces to C, then A reduces to C

After Cook-Levin, to show a problem X is NP-complete we  
need only show that X  NP and that Satisfiability or another  

NP-complete problem reduces to X .

Algorithm for Cg(x)f (x)


